研晟考研-以研促教,研精毕智,厚德载晟!
24小时报名热线
13021053105

2025年湖南师范大学数学与统计学院自命题科目泛函分析硕士研究生入学考试大纲

作者:研晟考研
2024-11-11 11:46:52
6
来源:湖南师范大学研究生院官网
收藏

研晟考研,专注清华北大等985/211名校考研辅导,拥有完善的服务团队,专属定制化的考研备考规划,力争实现每位学子的考研梦、名校梦。

  考试科目代码:[]考试科目名称:泛函分析


  一、考试内容及要点


  1、距离空间和赋范线性空间


  考试内容


  (1)距离空间:距离空间的概念,距离空间中的开集闭集,稠密性与可分性,连续映射的概念,距离空间中的完备性,列紧集,紧集及其上连续映射,具体空间列紧集的判定定理,压缩映射原理及其应用。


  (2)赋范线性空间:线性空间、范数、赋范线性空间、Banach空间等概念,赋范线性空间上范数的等价性,常见的具体Banach空间及其常用的范数的定义。


  考试要点


  (1)熟悉距离空间的概念和一些具体的距离空间;理解距离空间中的开集闭集,稠密集与空间的可分性;熟练掌握连续映射的概念、距离空间中的完备性、列紧集和紧集以及其上连续映射的性质;掌握具体空间列紧

集的判定法;熟练掌握压缩映射原理,并会用压缩映射原理分析映射的不动点。


  (2)理解线性空间、范数、赋范线性空间等概念;掌握Banach空间、线性赋范空间上范数的等价性;熟悉某些常见Banach空间中常用的范数的定义。


  2、有界线性算子与连续线性泛函


  考试内容


  有界线性算子和连续线性泛函的概念和其性质,线性算子空间、共轭(对偶)空间,某些常见Banach空间的共轭空间。


  考试要点


  掌握有界线性算子和连续线性泛函的概念和其性质,并会计算界线性算子和连续线性泛函的范数;理解线性算子的连续性和有界性,熟悉算子空间、共轭(对偶)空间的基本性质和某些常见Banach空间的共轭空间。


  3、Hilbert空间


  考试内容


  内积空间的基本概念与基本性质、几何特征、正交系、正规正交基、正交化,Hilbert空间的同构,射影定理、Hilbert空间上的Riesz表示定理。


  考试要点


  熟悉内积空间的基本概念与基本性质、几何特征;熟练掌握正交系、正规正交基、正交化、射影定理;理解Hilbert空间的同构、Hilbert空间上的Riesz表示定理。


  4、Banach空间的基本定理


  考试内容


  Hahn-Banach延拓定理及其推论,Riesz表示定理及应用,共轭算子及其性质,第一、第二纲的集,纲定理,一致有界定理及应用,开映射定理,闭图象定理,弱收敛和弱收敛。


  考试要点


  熟练掌握Hahn-Banach延拓定理的推论、Riesz表示定理、一致有界定理及应用、开映射定理、闭图象定理;掌握共轭算子及其性质;理解Hahn-Banach延拓定理、第一、第二纲的集;了解弱收敛和弱收敛。



相关阅读

预约
报名
在线咨询 微信
微信咨询
QQ群
(1)群
(2)群
(3)群
(4)群
常见问题 联系我们

13021053105