研晟考研,专注清华北大等985/211名校考研辅导,拥有完善的服务团队,专属定制化的考研备考规划,力争实现每位学子的考研梦、名校梦。
考试科目代码:[]考试科目名称:泛函分析
一、考试内容及要点
1、距离空间和赋范线性空间
考试内容
(1)距离空间:距离空间的概念,距离空间中的开集闭集,稠密性与可分性,连续映射的概念,距离空间中的完备性,列紧集,紧集及其上连续映射,具体空间列紧集的判定定理,压缩映射原理及其应用。
(2)赋范线性空间:线性空间、范数、赋范线性空间、Banach空间等概念,赋范线性空间上范数的等价性,常见的具体Banach空间及其常用的范数的定义。
考试要点
(1)熟悉距离空间的概念和一些具体的距离空间;理解距离空间中的开集闭集,稠密集与空间的可分性;熟练掌握连续映射的概念、距离空间中的完备性、列紧集和紧集以及其上连续映射的性质;掌握具体空间列紧
集的判定法;熟练掌握压缩映射原理,并会用压缩映射原理分析映射的不动点。
(2)理解线性空间、范数、赋范线性空间等概念;掌握Banach空间、线性赋范空间上范数的等价性;熟悉某些常见Banach空间中常用的范数的定义。
2、有界线性算子与连续线性泛函
考试内容
有界线性算子和连续线性泛函的概念和其性质,线性算子空间、共轭(对偶)空间,某些常见Banach空间的共轭空间。
考试要点
掌握有界线性算子和连续线性泛函的概念和其性质,并会计算界线性算子和连续线性泛函的范数;理解线性算子的连续性和有界性,熟悉算子空间、共轭(对偶)空间的基本性质和某些常见Banach空间的共轭空间。
3、Hilbert空间
考试内容
内积空间的基本概念与基本性质、几何特征、正交系、正规正交基、正交化,Hilbert空间的同构,射影定理、Hilbert空间上的Riesz表示定理。
考试要点
熟悉内积空间的基本概念与基本性质、几何特征;熟练掌握正交系、正规正交基、正交化、射影定理;理解Hilbert空间的同构、Hilbert空间上的Riesz表示定理。
4、Banach空间的基本定理
考试内容
Hahn-Banach延拓定理及其推论,Riesz表示定理及应用,共轭算子及其性质,第一、第二纲的集,纲定理,一致有界定理及应用,开映射定理,闭图象定理,弱收敛和弱收敛。
考试要点
熟练掌握Hahn-Banach延拓定理的推论、Riesz表示定理、一致有界定理及应用、开映射定理、闭图象定理;掌握共轭算子及其性质;理解Hahn-Banach延拓定理、第一、第二纲的集;了解弱收敛和弱收敛。